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Abstract—Researchers increasingly rely on using web-based
systems for accessing and running scientific applications across
distributed computing resources. However existing systems lack
a number of important features, such as publication and
sharing of scientific applications as online services, decoupling
of applications from computing resources and providing remote
programmatic access. This paper presents Everest, a web-based
platform for researchers supporting publication, execution and
composition of applications running across distributed com-
puting resources. Everest addresses the described challenges
by relying on modern web technologies and cloud computing
models. It follows the Platform as a Service (PaaS) cloud
delivery model by providing all its functionality via remote
web and programming interfaces. Any application added to
Everest is automatically published both as a user-facing web
form and a web service. Another distinct feature of Everest is
the ability to attach external computing resources by any user
and flexibly use these resources for running applications. The
paper provides an overview of the platform’s architecture and
its main components, describes recent developments, presents
results of experimental evaluation of the platform and discusses
remaining challenges.
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I. INTRODUCTION

The ability to effortlessly use and combine existing com-
putational tools and computing resources is an important
factor influencing research productivity in many scientific
domains. However, scientific software often requires specific
expertise in order to install, configure and run it that is
beyond the expertise of an ordinary researcher. This also
applies to configuration and use of high-performance com-
puting resources to run such applications. The increasing
complexity of problems being solved requires simultane-
ous use of multiple applications and distributed resources,
which brings important issues of application composition
and resource integration. To streamline collaboration in
multidisciplinary research projects it is crucial to be able to
share not only scientific expertise, but software and resources
of each partner.

As such, there is a clear demand for high-level tools for
publication, sharing and composition of scientific applica-

tions supporting execution of these applications across dis-
tributed computing resources. A number of systems targeting
the mentioned problems have been developed in the recent
decade, including grid middleware [1]–[4], scientific work-
flow systems [5]–[9] web service toolkits [10]–[12], web-
based scientific gateways and platforms [13]–[18]. However,
several challenges remain, which are not addressed well by
existing approaches and systems.

The first challenge is supporting publication and sharing
of scientific applications as online services. The use of
service-oriented approach can enable wide-scale sharing,
publication and reuse of applications, as well as automation
of scientific tasks and composition of applications into new
services [19]. However, the existing scientific gateways do
not expose applications as services thus limiting opportu-
nities for application reuse and interoperability. Moreover,
most of such systems do not support publication of new
applications by users. While the web service toolkits imple-
ment transformation of scientific applications into services,
they require installation and lack an infrastructure for hosting
services. The scientific workflow systems are mostly desktop
tools that do not support publication of produced workflows
as new services. The grid middleware implements only
generic web services to access computing resources and is
too low-level for the majority of researchers.

The second challenge is decoupling published applications
from computing resources. The existing scientific gateways
run applications on a statically configured set of resources
and don’t support adding new computing resources by users.
This makes it impossible to implement two common use
cases. The first is a user wanting to utilize local resources in
addition to resources provided by the gateway to run appli-
cations. The second is a user wanting to share an application
running on custom resources. While the web service toolkits
support the last use case, they don’t support passing custom
resources to the deployed service. As such, it is not possible
to share only application and enable users to run it on
resources they have. The scientific workflow systems provide
such ability by passing workflow descriptions between users
[20]. However such approach requires each user to install
and run the workflow engine on its machine. The grid



middleware supports running applications on custom subsets
of resources with provided user credentials, however all
required resources should be accessible via the single grid,
which is not always possible.

The third challenge is to make these high-level tools
available online without requiring users to install, run and
update software on their machines. This requires transition
from standalone desktop applications and software toolkits
to online multi-user platforms. While we see this transition
already in the form of web-based platforms [16], online
workflow editors [12] and problem-solving environments
[18], current efforts target mostly user-facing interfaces.
We believe that it is of equal importance to implement
open programming interfaces enabling users to integrate and
use these next-generation online platforms with third-party
systems. While appealing directly to a relatively small set of
skilled users, such approach will benefit all users by enabling
new types of applications and use cases.

In this paper we present Everest [21], [22], a web-
based platform supporting publication, sharing and execu-
tion of scientific applications across distributed computing
resources. Everest addresses the described challenges by
relying on modern web technologies and cloud comput-
ing models. It follows the Platform as a Service (PaaS)
model by providing all its functionality via remote web and
programming interfaces. A single instance of the platform
can be accessed by many users in order to create, run and
share applications with each other without the need to in-
stall additional software on their machines. Any application
added to Everest is automatically published both as a user-
facing web form and a web service, addressing the first
challenge. Another distinct feature of Everest is the ability
to attach external computing resources by any user and
flexibly bind such resources to applications, addressing the
second challenge. Finally, Everest is built around the open
programming interface implemented using RESTful web
services and accompanied with the Python API, addressing
the third challenge.

Everest was introduced in a position paper [22] that
outlined the proposed approach and described an early
prototype. In this paper we revisit the platform’s architecture,
describe recent developments, share results of experimental
evaluation of the platform and discuss remaining challenges.

The major contributions of this paper:
• To the best of our knowledge, Everest is the first

to introduce a complete PaaS solution enabling users
with minimal skills to publish and share scientific
applications as services (Section 2).

• Everest implements decoupling of published applica-
tions from computing resources by enabling users to
attach external resources and introducing dynamic re-
source binding (Section 3).

• Everest implements programmatic access to the plat-
form’s functionality enabling development of client

Figure 1. High-level architecture of Everest.

applications and integration with other systems (Section
4).

• We demonstrate the productivity and performance of
current Everest implementation by using synthetic and
real applications (Section 5).

II. EVEREST OVERVIEW

A. Architecture

A high-level architecture of Everest is presented in Fig-
ure 1. The server-side part of the platform implemented in
the Scala programming language is composed of three main
layers: REST API, Applications layer and Compute layer.
The client-side part includes the web user interface (Web
UI) and client libraries.

Everest is designed around an open programming inter-
face, the so called REST API, implemented as a RESTful
web service [23]. The API provides access to the platform’s
functionality, including operations for accessing and manip-
ulating users, applications, jobs and resources. It serves as a
single entry point for all platform clients, including the Web
UI and client libraries. API requests and responses are served
over HTTP with TLS, using JSON as a data interchange
format.

Applications layer corresponds to a hosting environment
for applications created by users. Applications are the core
entities in Everest that represent reusable computational
units that follow the common abstract model. An application
has a number of inputs that constitute a valid request to the
application and a number of outputs that constitute a result of
computation corresponding to some request. It is convenient
to think of an application as a “black box” with some input
and output ports or as a “function” with some arguments and
return values. It is assumed that applications usually process



each request independently from other requests in a stateless
fashion.

The described model is generic and applicable to many
scientific applications. This model also makes it possible
to define a uniform web service interface for accessing such
applications [12]. This interface is implemented in Everest as
a a part of the REST API. Each application is automatically
exposed by Everest as a RESTful web service enabling
remote access to the application both via the Web UI and
client libraries. An application owner can manage the list of
users that are allowed to access the application.

Everest doesn’t provide its own computing infrastructure
to run applications, nor is it tied to some fixed external
infrastructure like grid. Instead Everest enables users to
attach to it any external computing resources and to run
applications on arbitrary sets of these resources.

Compute layer manages execution of applications on
remote computing resources. When an application is invoked
via the REST API it generates a job consisting of one or
more computational tasks. Compute layer manages execu-
tion of these jobs on remote resources and performs all
routine actions related to staging of task input files, sub-
mitting a task, monitoring a task state and downloading task
results. Compute layer also monitors the state of resources
attached to the platform and uses this information during job
scheduling.

Web UI provides a convenient graphical interface for inter-
action with the platform. It is implemented as a JavaScript
application that can run in any modern web browser. The
Web UI is built directly on top of the REST API. This
ensures that users have access to the full range of platform’s
capabilities when they use the REST API. As a user in-
terface, the Web UI implement additional features, such as
wizards and client-side validations.

Client libraries simplify programmatic access to Everest
via the REST API and enable users to easily write programs
that access applications, combine them in computational
pipelines or integrate Everest with third-party tools. At the
moment, a client library for Python programming language
is implemented.

The technical details regarding the implementation of
Everest are out of scope of this paper and can be found
in [22].

B. Application Implementation

From the user’s viewpoint running an application basically
means sending it a request containing input values and
waiting for a result containing corresponding output values.
For each request Everest performs the following actions as
depicted in Figure 2:

1) Authenticate and authorize the client.
2) Parse and validate input values.
3) Create a new job which can be used to track the status

of the request and to collect the results.

Figure 2. Structure of Everest application.

4) Translate input values to one or more tasks that
represent units of computation.

5) Execute job tasks on computing resources bound to
the application.

6) Process task results, possibly generating new tasks for
execution.

7) Translate job results to output values returned to the
client.

Steps 1, 3 and 5 above (colored green in Figure 2) can
be implemented in a similar fashion for all applications.
However other steps (colored red) are application dependent.
In order to simplify creation of applications Everest pro-
vides generic implementations of these steps, the so called
application skeletons, that can be configured for a specific
application purpose. This “declarative” approach makes it
possible to avoid programming while adding applications to
Everest.

In order to add an application to Everest a user should
produce an application description that consists of two parts:

• Public information that is used by clients in order
to discover application and interact with it, including
specification of inputs and outputs (this information is
also used by Everest to implement Step 2 above).

• Internal configuration that is used by Everest in order to
process requests to the application and generate results,
including configuration of the application skeleton,
application files and resource binding.

C. Command Application Skeleton

Currently Everest implements a single application skele-
ton for command-line applications which is suitable for
porting to Everest existing applications. This skeleton gen-
erates a job consisting of a single task running the ported
application.

The internal configuration for the command application
skeleton includes:

• A string template for mapping input values to a task
command (used in Step 4),



• Input mappings that define how input values map to
task input files (used in Step 4),

• Output mappings that define how task output files map
to output values (used in Step 7).

D. Parameter Sweep Application

In addition to using application skeletons, it is possible
to implement generic applications on top of Everest. At
the moment this can be done only by platform developers,
however the produced application can be accessed by all
users. We have implemented one such application called
Parameter Sweep that can be used to run arbitrary parameter
sweep experiments.

The experiment is described by means of the so called
plan file similar to the one introduced in Nimrod/G system
[24]. This is a plain text file that contains parameter def-
initions and other directives that together define rules for
generation of parameter sweep tasks and processing of their
results. Besides a plan file a user can also provide an archive
with executables, scripts and input files referred in the plan
file.

The Parameter Sweep application parses submitted plan
file and uses it in order to generate job tasks (Step 4) and
convert task results into an output archive (Step 7). The
output of the application is an archive that contains the
results of the individual tasks taking into account filtering
rules specified in the plan file.

III. INTEGRATION WITH COMPUTING RESOURCES

Everest doesn’t provide a computing infrastructure and
instead relies on external resources to run application tasks.
This choice was motivated by the fact that many researchers
already have access to several computing resources ranging
from servers and clusters to grids and clouds. Therefore it
is more practical to utilize the potential of these resources
within Everest instead of building own infrastructure.

A resource can be attached to the platform by any user. As
with applications, a resource owner can manage the list of
users that are allowed to use the resource to run applications.
Everest allows a user to run an application on an arbitrary
set of attached resources provided the user has access to
them.

A. Compute Agent

Currently the preferred method for attaching a resource
to Everest is based on using a developed program called
agent. The agent runs on the resource and acts as a mediator
between it and Everest. This approach has a number of
advantages in comparison to plain SSH access such as
supporting resources without inbound connectivity (behind a
firewall or NAT) and ability to control actions performed by
Everest on the resource. However, such approach requires
the manual deployment of the agent on each resource. To
mitigate this disadvantage the developed agent has minimal

software requirements and is easy to deploy by an unprivi-
leged user.

The agent supports integration with various types of
resources via adapter mechanism. At the moment the fol-
lowing adapters are implemented:

• local - running tasks on a local server,
• docker - running tasks on a local server inside Docker

containers,
• torque - running tasks on a TORQUE cluster,
• slurm - running tasks on a SLURM cluster.

In the two latter cases an agent is running on a submission
host of the cluster.

The communication between an agent and the platform
is implemented through the WebSocket protocol [25]. Upon
startup an agent initiates connection with the platform to es-
tablish a bidirectional communication channel. This channel
is used only for task control and status messages exchanged
between Everest and an agent. Task data transfer is per-
formed by an agent via the HTTP protocol. Authentication
of an agent is performed by passing a secret token issued
by Everest.

In order to attach a resource a user should register the
resource in Everest and run the agent on the resource with
configuration including the obtained token. After the agent
is connected to Everest it starts to send information about
the resource state that is displayed in the Web UI.

B. Integration with European Grid Infrastructure

Besides standalone servers and clusters supported via the
described agent, Everest also implements integration with
the European Grid Infrastructure (EGI). A user can attach
as a new resource a specific virtual organization within EGI
by uploading a valid proxy certificate. This certificate is used
by Everest to submit jobs to EGI on behalf of the user. The
interaction with the grid is implemented via the EMI User
Interface (UI) which provides a standard set of commands
for accessing EGI.

C. Binding Resources to Applications

In order to run an application it should be bound to at least
one available resource. Everest implements flexible binding
of resources to applications supporting different use cases
presented in Figure 3 and discussed below.

Static resource binding means that an application owner
configures a static set of resources that should be used
by Everest to run the application. In this case the owner
implicitly allows application users to run the application on
these resources.

This approach is used by many scientific web services that
are tied to a fixed computing infrastructure. Static binding
is convenient for application users since they don’t deal
with resources directly. Such approach is also desirable
if an application has specific hardware requirements or
commercial value. However, in this case the application



Figure 3. Resource binding models.

owner has to supply computing resources in addition to the
application itself. This is a serious barrier for individual
scientists wanting to easily share their applications in the
form of services with as many colleagues as possible.

Dynamic resource binding means that an application user
specifies resources for running her job. This approach elim-
inates the mentioned barrier by enabling users to run the
application on their resources. In this case the application
owner need not to supply any computing resources. For the
application users this implies the need to have access to
some resources. Such resources can be attached to Everest
by a user herself or by a resource administrator.

The implementation of dynamic binding is usually prob-
lematic for self-hosted applications since there is a lack of
trust between the application owner and users for direct
delegation of resource credentials. Since Everest both hosts
applications and interacts with resources it can play a role
of a trusted third party ensuring that an application owner
can not obtain a direct access to a user’s resource.

Everest implements both static and dynamic resource
binding models. It is possible to use both models in an ap-
plication by providing default static resources and enabling
users to dynamically override it with their resources.

Flexible resource binding opens new possibilities, but also
brings some challenges discussed below.

D. Application Scheduling

For both static and dynamic models Everest supports
binding of multiple resources to an application. In this case
the platform should perform automatic scheduling of the
application tasks across these resources. From this point of
view Everest can be seen as a multitenant metascheduling
service since different users can have different sets of
resources. The scheduling component of Everest is currently
under an active development and we plan to describe it and
the underlying approach in the following papers.

E. Enabling Secure and Portable Applications

Dynamic resource binding implies running the application
code on an arbitrary resource supplied by the user. This
approach has several challenges including the protection of
resources from malicious code and making the application
portable across heterogeneous resources.

The problem of malicious code is less severe in scientific
computing in comparison to consumer software. However
by making it easy to publish applications and run them
on supplied resources Everest can increase such security
risks. Here we propose to follow the common practices
by warning users about running untrusted applications on
their resources, identification of application owners, digitally
signing application files and scanning them with antivirus
software. The application owners could also publish the code
and files used by the application for examination by users.

Scientific computing resources are heterogeneous both in
terms of hardware and software. This makes it hard to take
an application that runs on one resource and get it to run
on another arbitrary resource without resorting to manual
compilation, installing and configuration of the application
and its dependencies. We have prototyped two solutions to
this problem in Everest based on application virtualization.

The first solution relies on Linux containers [26] and
Docker [27] to run the application in a disposable con-
tainer using the configuration provided by the application
developer. This approach provides both application isolation
and ability to reproduce any custom software environment.
Unfortunately, this solution requires that Docker is installed
on a resource which is rather uncommon today.

The second solution implements the generation of a
portable application package in Everest by using CARE [28].
This is a lightweight virtualization tool that rely on system
call interposition to monitor the execution of the application
and generate a package including executables, libraries, and
data files accessed by the application.

We plan to further address these issues and describe the
proposed solutions in detail in the following papers.

IV. PROGRAMMATIC ACCESS

Running Everest applications via the Web UI is easy and
convenient, but it has some limitations. For example, if a user
wants to run an application many times with different inputs,
it is inconvenient to submit many jobs manually via the web
form. In the other case, if a user wants to produce some
result by using multiple applications, she has to manually
copy data between several jobs. Finally, the Web UI is not
suitable if one wants to run an Everest application from his
program or some other external application.

To support all these cases, from automation of repetitive
tasks to application composition and integration with third-
party tools, Everest implements an open programming inter-
face in the form of the REST API. It can be used to access
Everest applications from any programming language that



Figure 4. Example of a program using the Python API.

can speak HTTP protocol and parse JSON format. However
the REST API is generally too low level for most users,
so it is convenient to have ready-to-use client libraries built
on top of it. For this purpose a client library for the Python
programming language called Python API was implemented.

Figure 4 contains an example of a program using the
Python API. It implements a simple diamond-shaped work-
flow (depicted in the bottom right corner of the figure) that
consists of running four different applications - A, B, C and
D.

At the beginning the program imports everest module
which implements the Python API and creates a new session
by using a client token. Each client accessing Everest should
present such token with its request in order to authenticate
itself.

In order to access the applications the program creates a
new App object for each application by passing the appli-
cation ID and the session. The program initiates requests to
applications by invoking the run() method of the application
object. Inputs are passed as a Python dictionary with keys
and values corresponding to the input names and values
respectively. The run() method returns a Job object that can
be used to check the job state and obtain the result.

Note that the run() method doesn’t block the program
until the job is done and its’ results are available. Instead
the Python API allows the program to continue its execution
after the job is created by performing job submission and
monitoring in the background thread.

In the presented example all jobs except jobA cannot be
submitted to Everest immediately after the run() call because
they depend on results of other jobs. The program refers
to output values of a possibly incomplete job by using
the output() method of the job and specifying the output
name. This method also doesn’t block the program until the
output value is available. Instead the Python API waits in
the background thread until the job is completed, reads the
output values and submits dependent jobs as soon as all
their inputs are ready. For example, jobB and jobC will be
automatically submitted to Everest after jobA is completed.

The nonblocking semantics of the Python API, similar
to the dataflow programming paradigm [29], has a number
of advantages. It makes it simple to describe computa-
tional pipelines without requiring a user to implement the
boilerplate code dealing with waiting for jobs and passing
data between them. This approach also implicitly supports
parallel execution of independent jobs such as jobB and jobC
in the presented example.

After all jobs are created (while possibly not submitted)
the program waits for a final result by calling the result()
method on jobD. This method blocks the program until the
final job is completed and returns the job result. The result
is returned as a Python dictionary with keys and values
corresponding to output names and values respectively.
Finally the program closes the session by invoking the
close() function. This terminates all background activities
and ensures that the program exits normally.

V. EXPERIMENTAL EVALUATION

We performed experimental evaluation of Everest with
all server-side platform components deployed on a single
machine. The server running Ubuntu 12.04 has two quad-
core Intel(R) Xeon(R) E5620 CPUs operating at 2.4 GHz
and 24GB of RAM. A minimal tuning of the system and
the Nginx web proxy server was done in order to support a
high number of concurrent connections.

A. Applications

In our experiments we have used three applications de-
ployed in Everest.

Sleep is a command application which runs the standard
sleep command with a specified duration. While it has no
practical use, it is convenient for performing various tests,
e.g., submitting tasks with a fixed run time or emulating
execution of a large number of tasks on a resource without
overloading it.

Vina is a command application with runs Autodock Vina
[30], an open-source program for molecular docking. It
represents a typical scientific application Everest is targeted
at. Figure 5 shows a web form for running the Vina appli-
cation generated by the Web UI based on the application
description. This application has nine inputs that correspond
to the command line options of Autodock Vina and two



Figure 5. A web form for running the Autodock Vina application generated
by Everest.

outputs that correspond to the output models and log files.
In the command pattern we have set the number of CPUs
to use by Vina to 1 since Everest currently doesn’t support
multicore tasks. The Vina executable has been added to the
application files in order to enable execution on resources
without pre-installed Vina. As shown in Figure 5 we haven’t
specified default resources for running the application and
enabled dynamic resource binding.

The whole process of porting Autodock Vina to Everest,
including test runs, took less than an hour. We have observed
similar results while porting to Everest other well-known
applications such as POV-Ray, PyMOL and R environment.
This demonstrates high productivity of Everest for publica-
tion and sharing of scientific applications.

Parameter Sweep is a generic application for running
parameter sweep experiments described in Section 2.

B. Performance Tests

To estimate the throughput and scalability of the REST
API we have performed repeated job submissions during
one minute with varying number of concurrent clients. Job
submission was chosen as the most frequent and critical

Table I
RESULTS OF RAW JOB SUBMISSION TESTS FOR THE SLEEP APPLICATION

Clients Mean RPS Mean RT (ms) 95th percentile RT (ms)

1 95 10 16
10 395 24 32
100 1108 88 200
1000 1865 509 967
2000 1819 1051 2154

Table II
RESULTS OF RAW JOB SUBMISSION TESTS FOR THE VINA APPLICATION

Clients Mean RPS Mean RT (ms) 95th percentile RT (ms)

1 11 19 37
10 25 76 101
100 59 521 1317
1000 54 3204 9176

operation among those provided by the API.
The results of raw job submission tests for the Sleep

application, including obtained throughput (requests per sec-
onds, RPS) and latency (response time, RT), are presented
in Table 1. The platform running on a single server is
capable of serving up to a thousand of concurrent clients
with acceptable latencies. Note however that these values
correspond to the upper bounds of performance, since the
job request has minimal size and the job doesn’t have input
files.

To estimate the effect of input file uploads we have
performed the same tests for the Vina application. In this
case the job submission is preceded with uploads of two
input files (216 KBytes in total) performed sequentially.
The results of these tests are presented in Table 2. A large
number of concurrent uploads put a stress on disk I/O
resulting in decreased throughput and increased latency of
job submission calls. This is a potential scalability bottleneck
that we plan to address in the future.

To perform the end-to-end testing we have simulated the
complete client interaction, starting with job submission,
proceeding with periodic polling of the job state and com-
pleting with job deletion. This test can be used to estimate
the latency introduced to the job processing time, i.e., system
overhead. We used the Sleep application with varying job
duration as a workload. A single server with the agent was
set up to simultaneously run 100 tasks. The job polling
period in a client was set to 5 seconds. In the case of
100 concurrent jobs when all jobs can be processed by the
resource immediately, the maximum observed overhead is
around 10 seconds. In the case of 1000 jobs when jobs
are processed in multiple waves, the maximum overhead
has increased to 40 seconds due to additional scheduling
delays. While such overhead is negligible for typical long-
running jobs, it could be improved in the future to better



Figure 6. The number of running tasks over the course of two experiments.

accommodate short jobs.
To estimate the effect of many resources attached to Ever-

est the same full job cycle tests were performed with 100
agents running on different servers across several locations.
Each agent was configured to simultaneously run 10 tasks.
The maximum total overhead observed in tests with 1000
concurrent jobs is 23 seconds. This confirms that Everest can
handle relatively large number of attached resources without
significant impact on performance.

As a final note, during all of the described experiments we
didn’t observe any failed REST API requests that demon-
strates the robustness of the Everest implementation.

C. Real Application Runs

We have performed several real application runs on the
ad-hoc computing infrastructure consisting of three servers
and three clusters attached to Everest via agents (316 cores
in total). To avoid the noise we disabled all other job sub-
missions on these resources during the experiments. Figure 6
displays the number of running tasks over the course of two
such experiments. The first experiment consisted of running
1000 Vina jobs with the ramp-up period of 30 seconds. In
the second experiment we used Parameter Sweep application
to run a single job consisting of 670 tasks that represented
a real application from the geophysics domain.

As it can be seen from the Figure 6, Everest managed
to fully utilize the attached resources. The periodic drops
of utilization are due to task monitoring and scheduling
delays that occur between the task waves. This effect is less
significant in the second experiment where tasks have longer
run times. However, due to the same reason it suffers from
a long tail effect in the end of the experiment. We plan to
address these issues in future by optimizing the scheduler
component of Everest.

VI. RELATED WORK

A large number of systems have been developed for
simplifying publication, execution and composition of sci-
entific applications in distributed computing environments.
The presented Everest platform shares many similarities with

these systems and relies on established approaches. In this
section we perform analysis of prior work and comparison
of Everest with related projects to identify major innovations
of our platform.

While comparing Everest with related projects it is es-
sential to distinguish between standalone and online sys-
tems. The former are installed and run on user machines,
while the latter run on dedicated servers and are accessed
via remote interfaces. Online systems such as Everest and
related Software-as-a-Service (SaaS) model are becoming
mainstream by enabling instant user access and streamlining
software updates.

The majority of related online systems are web-based,
i.e. focused on implementing remote access to scientific
tools and computing resources via convenient web user
interfaces. The examples of such systems include grid por-
tals, science gateways and scientific hubs [13]–[15]. While
being successful among unskilled users, such systems lack
high-level tools for application composition. This drawback
was targeted by the second generation of online platforms
[16]–[18] that enabled users to compose applications and
publish produced workflows as new applications. However,
while relying internally on service-oriented approach, these
systems do not actually expose applications as web services
or provide programming interfaces. In fact, users can work
with applications only via system’s user interfaces. This
limits opportunities for application reuse, composition and
integration with third-party tools.

Everest takes a different API-centric approach by building
the platform around an open programming interface. All
applications in Everest are exposed via the REST API thus
enabling remote access to these applications from other sys-
tems. This makes it possible, for example, to use third-party
workflow systems to compose Everest-hosted applications
or mix them with other applications.

Programmatic access via web service based APIs is
common among modern web applications and cloud com-
puting services. The proliferation of Web APIs [31] has
spawned development of mashups [32] that combine data,
presentation and functionality from multiple services. Web
service composition tools, such as Yahoo! Pipes, provided
convenient interfaces for building mashups and making them
available to everyone as new services. These lessons are
largely ignored in existing web-based scientific environ-
ments. One of notable exceptions is the Galaxy platform
[16] implementing the REST API that can be used to
programmatically access the platform, e.g. run workflows.
However, Galaxy doesn’t expose individual applications
(tools) as services.

A number of service-oriented toolkits have been devel-
oped for transformation of scientific applications into web
services [10]–[12]. Everest is based on our prior work on
MathCloud platform [12], which included all core tools
for building a service-oriented environment such as service



container, service catalogue and workflow system. Everest
shares many similarities with these toolkits, such as declar-
ative approach for application description and automatic
generation of web forms. While existing toolkits represent
standalone platforms, Everest is online platform supporting
service development and hosting using PaaS model. This
approach has similar benefits as SaaS model discussed
above.

Scientific workflow systems [5]–[9] implement high-level
tools for composition of applications into computational
pipelines. The majority of existing systems are standalone,
running both workflow editor and engine on a user’s ma-
chine. Some systems, such as Taverna [5], support remote
execution of workflows on a central server, which is conve-
nient for long-running jobs. Triana [8] introduced support for
publication of workflows as web services, while MathCloud
[12] featured web-based workflow editor. Recent online
platforms, such as Galaxy, implement their own tools for
workflow editing, execution and sharing. Everest doesn’t
implement a workflow editor, however, as was discussed
above, it can be integrated with any existing workflow
system that supports calling web services. The Python API
introduced in Section 4 can also be used to define and
execute computational pipelines with Everest.

All discussed systems support integration with distributed
computing resources and infrastructures needed to run ap-
plications. The range of supported resource types (servers,
clusters, grids, clouds) differ from system to system. While
standalone systems doesn’t impose any restrictions on used
resources, users of existing online systems are often limited
to a fixed set of resources configured by the administrator.
Frequently this shared infrastructure cannot meet increasing
demand without implementing limits on resource usage,
resulting in delays that users may find unacceptable. A
common approach to this problem is to enable users to run
a personal installation of the system configured to use local
or cloud resources [33]. However, this approach requires
additional efforts and expenses from users in order to self-
host and upgrade the system.

Everest follows a different approach by enabling any
user to attach to the platform external computing resources.
This approach helps both to avoid the shared infrastructure
bottleneck and efficiently utilize local resources available
to individual users. Dynamic resource binding decouples
applications from resources enabling users to publish and
share applications without having to provide resources.
Potentially Everest can be used as a central marketplace for
both application and resource providers. To the best of our
knowledge, Everest is the first to implement such approach
among web-based scientific environments.

VII. CONCLUSION

We have presented Everest, a new web-based platform
for publication, execution and composition of applications

running across distributed computing resources. Everest is a
complete PaaS solution enabling users with minimal skills
to publish and share scientific applications as services.
It implements decoupling of published applications from
computing resources by enabling users to attach external
resources and introducing dynamic resource binding. Everest
supports programmatic access to the platform’s functionality
enabling development of client applications and integration
with other systems. We have demonstrated the productivity
and performance of current Everest implementation that is
capable of serving up to a thousand of concurrent users while
running on a single server. The platform is available online
to all interested users [21].

Future work will address the remaining challenges and
gaps in platform’s functionality, such as implementation of
advanced scheduling across multiple resources, integration
with other types of computing resources and supporting
secure and portable applications. We plan to extend the
types of applications that users can publish on Everest by
providing native support for parallel, many-task and data-
intensive applications, as well as supporting publication of
composite applications. Last but not least, we also plan
to address issues related to transforming Everest into a
public computing platform, such as supporting horizontal
scalability and providing QoS guarantees.
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